Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping
نویسندگان
چکیده
Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these focus on only one of the partners. We developed an expression quantitative trait locus (eQTL) mapping-based approach to identify cause-and-effect relationships between genes from two partners engaged in an interspecific interaction. We demonstrated the approach by assaying expression of 98 isogenic plants (Medicago truncatula), each inoculated with a genetically distinct line of the diploid parasitic nematode Meloidogyne hapla With this design, systematic differences in gene expression across host plants could be mapped to genetic polymorphisms of their infecting parasites. The effects of parasite genotypes on plant gene expression were often substantial, with up to 90-fold (P = 3.2 × 10-52) changes in expression levels caused by individual parasite loci. Mapped loci included a number of pleiotropic sites, including one 87-kb parasite locus that modulated expression of >60 host genes. The 213 host genes identified were substantially enriched for transcription factors. We distilled higher-order connections between polymorphisms and genes from both species via network inference. To replicate our results and test whether effects were conserved across a broader host range, we performed a confirmatory experiment using M. hapla-infected tomato. This revealed that homologous genes were similarly affected. Finally, to validate the broader utility of cross-species eQTL mapping, we applied the strategy to data from a Salmonella infection study, successfully identifying polymorphisms in the human genome affecting bacterial expression.
منابع مشابه
Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations
Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype-phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside distal t...
متن کاملGenomic Networks of Hybrid Sterility
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of ge...
متن کاملExpression quantitative trait loci analysis in plants.
An expression Quantitative Trait Locus or eQTL is a chromosomal region that accounts for a proportion of the variation in abundance of a mRNA transcript observed between individuals in a genetic mapping population. A single gene can have one or multiple eQTLs. Large scale mRNA profiling technologies advanced genome-wide eQTL mapping in a diverse range of organisms allowing thousands of eQTLs to...
متن کاملSequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition
The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been pr...
متن کامل